4.6 Article

Investigation of an acid-base and redox molecular switch: From bulk the single-molecule level

Journal

CHEMISTRY-A EUROPEAN JOURNAL
Volume 13, Issue 25, Pages 7066-7074

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/chem.200700236

Keywords

electron transfer; Meisenheimer complex; molecular switch; single-molecule studies; zwitterionic complex

Ask authors/readers for more resources

In this work we investigate a new fluorescent molecular switch based on the interconversion between the fluorescent zwitterionic form (ZW1)and the non-fluorescent anionic state (MC2) of a spirocyclic Meisenheimer complex of 1,3,5-trinitrobenzene. Density functional theory molecular orbital calculations reveal that photo-induced electron transfer from a guanidine group to the trinitrocyclohexadiene fluorophore of the complex quenches the emission from MC2. Protonation, as well as coordination of other Lewis acids to the guanidine group, suppress the quenching mechanism and allow the complex to fluoresce. In agreement with the calculations, reversible on-off fluorescence switching of the ZW1-MC2 bulk system occurs by protonation-deprotonation of the guanidine moiety upon acid-base addition. Interestingly, spectroelectrochemical ensemble measurements show that switching of the ZW1-MC2 pair can also be attained electrochemically, thus unraveling the versatile functioning of this system. The ultimate limit of monitoring the reversible on-off operation of individual switch molecules is reached by means of single-molecule fluorescence spectroscopy, which demonstrates the potential of the ZW1-MC2 system to be used as a true single-molecule switch on the nanometer scale.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available