4.4 Article

Ectopic expression of the homeobox gene Cux-1 rescues calcineurin inhibition in mouse embryonic kidney cultures

Journal

DEVELOPMENTAL DYNAMICS
Volume 236, Issue 1, Pages 184-191

Publisher

WILEY
DOI: 10.1002/dvdy.21003

Keywords

Cux-1; cut; nephrogenesis; kidney; p27; calcineurin; cyclosporin

Funding

  1. NIDDK NIH HHS [DK066422, R01 DK058377, DK58837] Funding Source: Medline

Ask authors/readers for more resources

Cux-1 is a murine homeobox gene structurally related to Drosophila cut. Cux-1 is highly expressed in the nephrogenic zone of the developing kidney, where its expression coincides with cell proliferation. Cux-1 functions as a transcriptional repressor of the cyclin kinase inhibitors (CKI) p21. and p27. Cux-1 DNA binding activity is negatively regulated by phosphorylation, and dephosphorylation of Cux-1 results in increased DNA binding. Transgenic mice ectopically expressing Cux-1 develop renal hyperplasia associated with the down-regulation of the CKI p27. Calcineurin A (CnA) alpha (-/-) mice display renal hypoplasia associated with the ectopic expression of p27. CnA is a serine/threonine phosphatase activated by intracellular calcium. Inhibiting CnA with cyclosporin A (CsA) leads to nephron deficit in rat metanephric organ cultures and apoptosis in various renal cell lines. To determine whether the ectopic expression of p27 in CnA-alpha -/- kidneys results from the down-regulation of Cux-1, metanephroi from embryonic Cux-1 transgenic and wild-type mice were harvested and cultured with CsA for 5 days. CsA treatment significantly inhibited growth of wild-type metanephroi. In contrast, CsA-treated Cux-1 transgenic kidney cultures were not growth inhibited, but showed high levels of cell proliferation in the nephrogenic zone. Moreover, in CsA-treated Cux-1 transgenic kidney cultures, p27 was not expressed in the nephrogenic zone, but only up-regulated in maturing glomeruli and tubules. Taken together, our results demonstrate that ectopic expression of Cux-1 can rescue the effects of CsA inhibition of CnA and suggest that Cux-1 may be regulated by calcineurin A.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available