4.6 Article

A quantum mechanics/molecular mechanics study of the protein-ligand interaction for inhibitors of HIV-1 integrase

Journal

CHEMISTRY-A EUROPEAN JOURNAL
Volume 13, Issue 27, Pages 7715-7724

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/chem.200700040

Keywords

diketo acids; HIV-1 integrase; inhibitors; molecular dynamics; quantum mechanics/molecular mechanics

Ask authors/readers for more resources

Human immunodeficiency virus type-1 integrase (HIV-1 IN) is an essential enzyme for effective viral replication. Diketo acids such as L-731,988 and S-1360 are potent and selective inhibitors of HIV-1 IN. In this study, we used molecular dynamics simulations, within the hybrid quantum mechanics/molecular mechanics (QM/MM) approach, to determine the protein-ligand interaction energy between HIV-1 IN and L-731,988 and 10 of its derivatives and analogues. This hybrid methodology has the advantage that it includes quantum effects such as ligand polarisation upon binding, which can be very important when highly polarisable groups are embedded in anisotropic environments, as for example in metal-containing active sites. Furthermore, an energy decomposition analysis was performed to determine the contributions of individual residues to the enzyme-inhibitor interactions on averaged structures obtained from rather extensive conformational sampling. Analysis of the results reveals first that there is a correlation between protein-ligand interaction energy and experimental strand transfer into human chromosomes and secondly that the Asn-155, Lys-156 and Lys-159 residues and the Mg2+ ion are crucial to anti-HIV IN activity. These results may explain the available experimental data.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available