4.6 Article Proceedings Paper

Small ubiquitin-like modifier-1 (SUMO-1) modification of thymidylate synthase and dihydrofolate reductase

Journal

CLINICAL CHEMISTRY AND LABORATORY MEDICINE
Volume 45, Issue 12, Pages 1760-1763

Publisher

WALTER DE GRUYTER GMBH
DOI: 10.1515/CCLM.2007.355

Keywords

cytoplasmic serine hydroxymethyltransferase; dihydrofolate reductase; folate; small ubiquitin-like modifier (SUMO); thymidylate; thymidylate synthase

Ask authors/readers for more resources

Background: Impairments in folate-mediated one-carbon metabolism are associated with pathologies and developmental anomalies, including cardiovascular disease, cancer, neurological disorders and neural tube defects. The mechanisms that detail the role of folate and one-carbon metabolism in these disorders remain to be established. Folate deficiency impairs folate-dependent thymidylate biosynthesis resulting in depleted dTTP levels, increased rates of uracil incorporation into DNA and genomic instability. Folate-dependent enzymes involved in the de novo thymidylate pathway include cytoplasmic serine hydroxymethyltransferase (cSHMT), thymidylate synthase (TS) and dihydrofolate reductase (DHFR). Previously, we demonstrated that cSHMT-derived folate activated one-carbon units are preferentially incorporated into thymidylate, and we provided evidence that this was achieved through modification with small ubiquitin-like modifier (SUMO) enabling SUMO-dependent nuclear localization of cSHMT during S-phase. Methods and results: Here, we provide evidence that TS and DHFR are also substrates for UBC9-catalyzed SUMOylation in vitro by SUMO-1. Conclusions: The SUMOylation of cSHMT, TS and DHFR provides a mechanism by which all three enzymes in the thymidylate synthesis pathway are directed and compartmentalized in the nucleus.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available