4.6 Article

Synthesis, ionisation potentials and electron affinities of hexaazatrinaphthylene derivatives

Journal

CHEMISTRY-A EUROPEAN JOURNAL
Volume 13, Issue 12, Pages 3537-3547

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/chem.200601298

Keywords

electron affinities; electron transport; heterocycles; ionization potentials; pi stacking

Ask authors/readers for more resources

Several hexaazatrinaphthylene derivatives and a tris(thieno)hexaazatriphenylene derivative have been synthesised by reaction of the appropriate diamines with hexaketocyclohexane. The crystal structure of 2,3,8,9,14,15-hexachloro- 5,6,11,12,17,18-hexaazatrinaphthylene has been determined by X-ray diffraction; this reveals a molecular structure in good agreement with that predicted by density functional theory (DFT) calculations and pi-stacking with an average spacing between adjacent molecular planes of 3.18 angstrom. Solid-state ionisation potentials have been measured by using UV photoelectron spectroscopy and fall in the range of 5.99 to 7.76 eV, whereas solid-state electron affinities, measured using inverse photoelectron spectroscopy, vary in the range -2.65 to -4.59 eV. The most easily reduced example is a tris(thieno)hexaazatriphenylene substituted with bis(trifluoromethyl)phenyl groups; DFT calculations suggest that the highly exothermic electron affinity is due both to the replacement of the outermost phenylene rings of hexaazatrinaphthylene with thieno groups and to the presence of electron-withdrawing bis(trifluoromethyl)phenyl groups. The rather exothermic electron affinities, the potential for adopting pi-stacked structures and the low intramolecular reorganisation energies obtained by DFT calculations suggest that some of these molecules may be useful electron-transport materials.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available