4.4 Article

Application of crosslinkers to dentin collagen enhances the ultimate tensile strength

Publisher

WILEY
DOI: 10.1002/jbm.b.30593

Keywords

crosslinking agents; dentin; ultimate tensile strength; collagen

Funding

  1. NIDCR NIH HHS [DE16116] Funding Source: Medline

Ask authors/readers for more resources

The stabilization of dentin collagen with biocompatible crosslinking agents may be of clinical importance to improve dentin bond strength. The present study aimed to evaluate the effect of three collagen crosslinking agents on the ultimate tensile strength (UTS) of undemineralized and demineralized dentin. Ten freshly extracted sound molars were sectioned into 0.5 x 0.5 mm(2) thick beams. The beams were either demineralized or kept undemineralized. Then, specimens were subdivided into four groups according to treatments-PBS solution (control), 5% glutaraldehyde (GD), 0.5% proanthocyanidin PBS solution (PA), and 0.625% genipin PBS solution (GE). Specimens were kept in their respective solutions for either 4 or 40 h. To assess UTS, specimens were subjected to tensile forces at a crosshead speed of 1 mm/min. Statistical analysis was performed using two-way ANOVA and Fisher's PLSD test (p < 0.05). Statistically significant increases in UTS were observed for demineralized dentin after PA and GE dentin treatment, when compared with those of the control group. Dentin treated with GD showed no statistically significant differences in UTS when compared with that the control. Undemineralized dentin revealed no significant differences as compared to that of the control, regardless of the collagen crosslinkers. The application of two naturally occurring crosslinkers, i.e., PA and GE, to dentin collagen significantly improves UTS, indicating its potential value in restorative dentistry. (c) 2006 Wiley Periodicals, Inc.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available