4.7 Article

Modeling transients in the mechanical response of copper due to strain path changes

Journal

INTERNATIONAL JOURNAL OF PLASTICITY
Volume 23, Issue 4, Pages 640-664

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.ijplas.2006.08.001

Keywords

strengthening mechanisms; anisotropic material; polycrystalline material; constitutive behavior; Bauschinger effect

Ask authors/readers for more resources

When copper is deformed to large strains its texture and microstructure change drastically, leading to plastic anisotropy and extended transients when it is reloaded along a different strain path. For predicting these transients, we develop a constitutive model for polycrystalline metals that incorporates texture and grain microstructure. The directional anisotropy in the single crystals is considered to be induced by variable latent hardening associated with cross-slip, cut-through of planar dislocation walls, and dislocation-based reversal mechanisms. These effects are introduced in a crystallographic hardening model which is, in turn, implemented into a polycrystal model. This approach successfully explains the flow response of OFHC Cu pre-loaded in tension (compression) and reloaded in tension (compression), and the response of OFHC Cu severely strained in shear by equal channel angular extrusion and subsequently compressed in each of the three orthogonal directions. This new theoretical framework applies to arbitrary strain path changes, and is fully anisotropic. (c) 2006 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available