4.5 Article Proceedings Paper

Active biomonitoring of trace heavy metals using fish (Oreochromis niloticus) as bioindicator species.: The case of Nakivubo wetland along Lake Victoria

Journal

PHYSICS AND CHEMISTRY OF THE EARTH
Volume 32, Issue 15-18, Pages 1350-1358

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.pce.2007.07.034

Keywords

active biomonitoring (ABM); accumulation; fish; heavy metals; wetland

Ask authors/readers for more resources

The Nakivubo wetland in Uganda, which feeds Lake Victoria at Murchison bay, has become severely degraded over recent years and is particularly threatened by the expansion of industry, settlement and cultivation on its fertile fringes. The aim of this study was to actively biomonitor selected trace heavy metals using Nile tilapia (Oreochromis niloticus). Nile tilapia was set in cages at six sampling sites in Murchison bay for a period of six weeks, and sampling was done every 2 weeks for active biomonitoring and weekly for physico-chemical variables. The control (site 7) was at the Aquaculture Research and Development centre, Uganda. Fish tissue was dissected and gills, liver and muscle removed for heavy metal analysis. Water samples and fish tissue from each site were analysed using Atomic Absorption Spectrophotometer (AAS) to determine metal concentrations of zinc, copper, chromium and manganese. Site 4 had the highest average NH4-N of 14.28 +/- 12.73 mg/1 which was above effluent standards for Uganda. From the findings, there were significantly higher concentrations of heavy metals in fish than in water (p > 0.01). Fish kills were recorded highest for sites 4 (55%), 5 (77.5%) and 6 (60%) in less than six weeks indicating high levels of pollution. Gills showed the highest accumulation of copper after a period of six weeks as compared to other metals with a mean +/- SE of 11.7 mu g/mg wet weight. In general, the order of accumulation of metals in tissue after six weeks was in order; copper > zinc > chromium > manganese and gills > liver > muscle. In conclusion, active biomonitoring was found to be a good tool for monitoring water quality as it integrates responses to combinations of all contaminants thereby indicating overall effects in a water body. To improve the study, there is need to incorporate post mortem studies and biomarker analysis since the later can give early warning of pollution before fish kills are observed. (C) 2007 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available