4.6 Article

Current-voltage characteristics of a homologous series of polycyclic aromatic hydrocarbons

Journal

CHEMISTRY-A EUROPEAN JOURNAL
Volume 13, Issue 26, Pages 7349-7357

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/chem.200601249

Keywords

cyclodehydrogenation; hydrocarbons; nanotechnology; polycycles; scanning tunneling microscopy

Ask authors/readers for more resources

A novel alkyl-substituted polycyclic aromatic hydrocarbon (PAH) with D-2h symmetry and 78 carbon atoms in the aromatic core (C78) was synthesized, thereby completing a homologous series of soluble PAH compounds with increasing size of the aromatic pi system (42, 60, and 78 carbon atoms). The optical band gaps were determined by UV/Vis and fluorescence spectroscopy in solution. Scanning tunneling microscopy (STM) and spectroscopy (STS) revealed diode-like current versus voltage (I-V) characteristics through individual aromatic cores in monolayers at the interface between the solution and the basal plane of graphite. The asymmetry of the current-voltage (I-V) characteristics increases with the increasing size of the aromatic core, and the concomitantly decreasing HOMO-LUMO gap. This is attributed to resonant tunneling through the HOMO of the adsorbed molecule, and an asymmetric position of the molecular species in the tunnel junction. Consistently, submolecularly resolved STM images at negative substrate bias are in good agreement with the calculated pattern for the electron densities of the HOMOs. The analysis provides the basis for tailoring rectification with a single molecule in an STM junction.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available