3.8 Article

Mitochondrial oxidant generation is involved in determining why females live longer than males

Journal

FRONTIERS IN BIOSCIENCE
Volume 12, Issue -, Pages 1008-1013

Publisher

FRONTIERS IN BIOSCIENCE INC
DOI: 10.2741/2120

Keywords

gender; aging; estrogens; phytoestrogens; antioxidant enzymes; free radicals; review

Ask authors/readers for more resources

Females live longer than males in many mammalian species, including humans. This natural phenomenon can be explained on the basis of the mitochondrial theory of aging. Mitochondria are a major source of free radicals in cells. Mitochondria from female rats generate half the amount of hydrogen peroxide than those of males and have higher levels of mitochondrial reduced glutathione. The latter is due to females behaving as double transgenic in over-expressing antioxidant enzymes. Estrogens bind to the estrogen receptors and subsequently activate the mitogen activated protein (MAP) kinase and nuclear factor kappa B (NFkappaB) signalling pathways, resulting in an upregulation of antioxidant enzymes. Moreover, the 16S rRNA expression, which decreases significantly with aging, is four times higher in mitochondria from females than in those from males of the same chronological age. On the contrary, the oxidative damage of mitochondrial DNA is fourfold higher in males than in females. Ovariectomy abolishes the gender differences between males and females and estrogen replacement rescues the effect of ovariectomy. The challenge for the future is to find molecules that have the beneficial effects of estradiol, but without its feminizing effects. Phytoestrogens or phytoestrogen-related molecules may be good candidates to meet this challenge.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

3.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available