4.7 Article

Characterization of ADP-glucose transport across the cereal endosperm amyloplast envelope

Journal

JOURNAL OF EXPERIMENTAL BOTANY
Volume 58, Issue 6, Pages 1321-1332

Publisher

OXFORD UNIV PRESS
DOI: 10.1093/jxb/erl297

Keywords

ADP-glucose transport; amylopectin; amyloplasts; amylose; starch synthesis

Categories

Ask authors/readers for more resources

Most of the carbon used for starch biosynthesis in cereal endosperms is derived from ADP-glucose (ADP-Glc) synthesized by extra-plastidial AGPase activity, and imported directly across the amyloplast envelope. The properties of the wheat endosperm amyloplast ADP-Glc transporter were analysed with respect to substrate kinetics and specificities using reconstituted amyloplast envelope proteins in a proteoliposome-based assay system, as well as with isolated intact organelles. Experiments with liposomes showed that ADP-Glc transport was dependent on counter-exchange with other adenylates. Rates of ADP-Glc transport were highest with ADP and AMP as counter-exchange substrates, and kinetic analysis revealed that the transport system has a similar affinity for ADP and AMP. Measurement of ADP and AMP efflux from intact amyloplasts showed that, under conditions of ADP-Glc-dependent starch biosynthesis, ADP is exported from the plastid at a rate equal to that of ADP-Glc utilization by starch synthases. Photo-affinity labelling of amyloplast membranes with the substrate analogue 8-azido-[alpha-P-32]ADP-Glc showed that the polypeptide involved in substrate binding is an integral membrane protein of 38 kDa. This study shows that the ADP-Glc transporter in cereal endosperm amyloplasts imports ADP-Glc in exchange for ADP which is produced as a by-product of the starch synthase reaction inside the plastid.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available