4.8 Article

Carbon speciation of diesel exhaust and urban particulate matter NIST standard reference materials with C(1s) NEXAFS spectroscopy

Journal

ENVIRONMENTAL SCIENCE & TECHNOLOGY
Volume 41, Issue 1, Pages 173-178

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/es061044w

Keywords

-

Ask authors/readers for more resources

The U.S. National Institute of Standards and Technology (NIST) provides a number of particulate matter (PM) standard reference materials (SRM) for use in environmental and toxicological methodology and research. We present here the first analysis with respect to the molecular structure of the carbon in three such NIST SRM samples, i.e., diesel engine exhaust soot from heavy duty equipment engines (SRM 1650), diesel soot from a forklift engine (SRM 2975), and urban PM collected in St. Louis, MO (SRM 1648), with near-edge X-ray absorption fine structure (NEXAFS) spectroscopy. The NEXAFS spectra of the two diesel soot samples appear quite similar, while they differ significantly from the urban PM spectrum, in agreement with X-ray diffraction data published recently. Such comparison is made in terms of aromatic and aliphatic carbon species, as well as by a general comparison with graphitic materials. Both diesel soot SRM samples contain basic graphitic structures, but the presence of exciton resonance and extended X-ray absorption fine structure oscillations in SRM 1650 and the lack therof in SRM 2975 suggest that SRM 1650 is the more graphitic material. The presence of polycyclic aromatic hydrocarbons, which have a characteristic NEXAFS resonance at the same position as graphite, can obscure the graphitic character of soot, unless an extraction of the organic matter is made. Our NEXAFS data do not suggest that the urban PM sample SRM 1648 contains a substantial amount of graphite-like material.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available