4.4 Article

Effects of matrix composition and configuration on forest bird movements in a fragmented Afromontane biodiversity hot spot

Journal

ANIMAL CONSERVATION
Volume 15, Issue 6, Pages 658-668

Publisher

WILEY
DOI: 10.1111/j.1469-1795.2012.00562.x

Keywords

animal movement; forest fragmentation; habitat connectivity; habitat selection; Taita Hills; tropical forest birds

Funding

  1. Kenyan government (NCST) [5/002/R/274/4]
  2. VLIR-VLADOC scholarship
  3. Academy of Finland
  4. FWO [G.0055.08]

Ask authors/readers for more resources

Persistence of forest-dependent species in fragmented landscapes strongly relies on sufficient dispersal between patches, making it important to understand how animal movements are affected by the intervening matrix. Movements can be influenced through selection or avoidance of land cover based on their perceived suitability for foraging or providing cover. The composition and configuration of the matrix will, therefore, most likely be an important factor to consider when estimating connectivity between patches. To address this, we performed translocation experiments to understand how forest birds used different land cover types in a fine-grained matrix of a fragmented Afromontane biodiversity hot spot (Taita Hills, Kenya). Our results revealed that use of land cover types for both the forest specialist Cabanis's greenbul Phyllastrephus cabanisi and for the forest generalist white-starred robin Pogonocichla stellata was disproportional to their availability. However, this effect was influenced by matrix configuration; in patchy matrices, land cover selection was more pronounced compared with more uniform matrices, especially for the forest specialist. At the scale of movement steps, risk avoidance seemed to be a strong factor in the route decisions for both species. Observed steps contained on average lower proportions of open land cover and did less frequently intersect built-up areas than expected. P.?stellata did not differentiate between the alternative land cover types, whereas P.?cabanisi preferred steps that contained more indigenous forest. The observed negative relationship between degree of forest dependency and matrix permeability implies that for members of the Taita bird community, which are even more dependent on intact forest habitat (i.e. the critically endangered Taita thrush Turdus helleri), current permeability of the matrix may be even lower. Matrix restoration to improve connectivity may, therefore, be a crucial instrument for the long-term survival of forest-dependent species in these fragmented Afromontane landscapes.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available