4.6 Article

A handheld NASBA analyzer for the field detection and quantification of Karenia brevis

Journal

HARMFUL ALGAE
Volume 6, Issue 1, Pages 112-118

Publisher

ELSEVIER
DOI: 10.1016/j.hal.2006.11.001

Keywords

field detection; Karenia brevis; NASBA; quantification

Ask authors/readers for more resources

Blooms of Karenia brevis, the red tide forming dinoflagellate in the Gulf of Mexico, cause a myriad of ecological and economic problems for coastal communities, including massive fish and mammal mortalities, and damage to tourism and fisheries/shellfish harvesting industries. There is a need for accurate detection and prediction of K. brevis blooms, including rapid and inexpensive monitoring of both water and shellfish meats to ensure the safety of shellfish harvested for human consumption. To address this issue, we have developed a protocol for easy field extraction of cellular RNA from water samples and coupled it with a handheld nucleic acid sequence-based amplification (NASBA) sensor that amplifies and detects target mRNA specific to the rbcL gene of K. brevis. This extraction protocol is a modified version of the Qiagen RNeasy Mini Kit spin protocol and requires no specialized equipment or training. Once extracted, the RNA is amplified and detected by NASBA in an in-house designed and produced handheld sensor that provides a real-time fluorescence plotting of the amplification. Both the field RNA extraction protocol and the handheld NASBA analyzer compared favorably to laboratory-based technologies. In duplicate reactions, the amplification curves generated with the handheld detector closely mirrored the curves generated with the bench top Nuclisens EasyQ NASBA analyzer and there was no difference in the sensitivity obtained using the handheld device versus the bench top models. This extraction protocol and detection sensor will be a valuable tool for rapidly monitoring K. brevis in field environments. (c) 2006 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available