4.4 Article

Numerical simulations of tsunami waves and currents for southern Vancouver Island from a Cascadia megathrust earthquake

Journal

PURE AND APPLIED GEOPHYSICS
Volume 164, Issue 2-3, Pages 465-492

Publisher

SPRINGER BASEL AG
DOI: 10.1007/s00024-006-0169-0

Keywords

tsunami waves; Cascadia subduction zone; megathrust earthquake; numerical modelling

Ask authors/readers for more resources

The 1700 great Cascadia earthquake (M = 9) generated widespread tsunami waves that affected the entire Pacific Ocean and caused damage as distant as Japan. Similar catastrophic waves may be generated by a future Cascadia megathrust earthquake. We use three rupture scenarios for this earthquake in numerical experiments to study propagation of tsunami waves off the west coast of North America and to predict tsunami heights and currents in several bays and harbours on southern Vancouver Island, British Columbia, including Ucluelet, located on the west coast of the island, and Victoria and Esquimalt harbours inside Juan de Fuca Strait. The earthquake scenarios are: an 1100-km long rupture over the entire length of the subduction zone and separate ruptures of its northern or southern segments. As expected, the southern earthquake scenario has a limited effect over most of the Vancouver Island coast, with waves in the harbours not exceeding I m. The other two scenarios produce large tsunami waves, higher than 16 m at one location near Ucluelet and over 4 m inside Esquimalt and Victoria harbours, and very strong currents that reach 17 m/s in narrow channels and near headlands. Because the assumed rupture scenarios are based on a previous earthquake, direct use of the model results to estimate the effect of a future earthquake requires appropriate qualification.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available