4.7 Article

Fracture propagation as means of rapidly transferring surface meltwater to the base of glaciers

Journal

GEOPHYSICAL RESEARCH LETTERS
Volume 34, Issue 1, Pages -

Publisher

AMER GEOPHYSICAL UNION
DOI: 10.1029/2006GL028385

Keywords

-

Ask authors/readers for more resources

Propagation of water-filled crevasses through glaciers is investigated based on the linear elastic fracture mechanics approach. A crevasse will penetrate to the depth where the stress intensity factor at the crevasse tip equals the fracture toughness of glacier ice. A crevasse subjected to inflow of water will continue to propagate downward with the propagation speed controlled primarily by the rate of water injection. While the far-field tensile stress and fracture toughness determine where crevasses can form, once initiated, the rate of water-driven crevasse propagation is nearly independent of these two parameters. Thus, rapid transfer of surface meltwater to the bed of a cold glacier requires abundant ponding at the surface to initiate and sustain full thickness fracturing before refreezing occurs.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available