4.7 Article

Mass spectrometric identification of serum peptides employing derivatized poly(glycidyl methacrylate/divinyl benzene) particles and μ-HPLC

Journal

JOURNAL OF PROTEOME RESEARCH
Volume 6, Issue 1, Pages 382-386

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/pr060426y

Keywords

identification; MALDI-MS/MS; MELDI-MS; poly-(GMA/DVB)-IDA-Cu2+; mu-RP-HPLC; serum

Ask authors/readers for more resources

Biomarkers play a key role in preclinical screening and diagnosis of a disease. Various support materials are utilized for this task, in combination with MALDI-TOF-MS. The way to effectively bind serum contents and their profiling is well-elaborated by the material-enhanced laser desorption ionization (MELDI) approach. In this particular work, focus is placed on the development of a strategy to identify low molecular weight serum peptides. Poly(GMA/DVB) is derivatized in a way to achieve an affinity termed as immobilized metal ion affinity chromatography (IMAC). Iminodiacetic acid (IDA) is used as a chelating ligand, whereas copper (Cu2+) acts as a metal ion for complexing peptides and proteins out of blood serum. Polymer binds the serum compounds over a broad mass range, which includes low mass peptides and high mass albumin (66 kDa). Bound contents are eluted from material by an acetonitrile/trifluoroacetic acid mixture, which proves the reversible nature of metal and amino acid linkage. Polystyrene/divinyl benzene (PS/DVB) monolithic capillary column is used for fractionation through RP-HPLC, prior to the target spotting. The tandem TOF fragment ion mass spectra of each fraction is acquired and used to search against the Swiss-Prot database, using the Mascot search engine for the identification of peptides.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available