4.7 Article

Novel low-κ polyimide/mesoporous silica composite films:: Preparation, microstructure, and properties

Journal

POLYMER
Volume 48, Issue 1, Pages 318-329

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.polymer.2006.10.037

Keywords

polyimide/mesoporous silica composite films; dielectric constant; microstructure

Ask authors/readers for more resources

A series of novel low-dielectric constant (low-K) polyimide (PI) composite films containing the SBA-15 or the SBA-16-type mesoporous silica were successfully prepared via in situ polymerization and following thermal imidization. Their morphologies, dielectric constants, and thermal and dynamic mechanical properties were investigated. It is found that the dielectric constants of the composite films can be reduced from 3.34 of the pure PI to 2.73 and 2.61 by incorporating 3 wt% SBA-15 and 7 wt% SBA-16, respectively. The reduction of the dielectric constant is attributed to the incorporation of the air voids (k = 1) stored within the mesoporous silica materials, the air volume existing in the gaps on the interfaces between the mesoporous silica and the PI matrix, and the free volume created by introducing large-sized domains. The PI/mesoporous silica composite films prepared in this study also present stable dielectric constants across the wide frequency range and a good phase interconnection. The improvement of the thermal stability and dynamic mechanical properties of the PI film is achieved by incorporation of the mesoporous silica materials. The enhanced interfacial interaction between the surface-treated mesoporous silica and the PI matrix has led to the minimization of the deterioration of the mechanical properties. The incorporation of the mesoporous silica materials is a promising approach to prepare the low-kappa PI films. (c) 2006 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available