4.6 Article

Repetitive deformation activates focal adhesion kinase and ERK mitogenic signals in human caco-2 intestinal epithelial cells through Src and Rac1

Journal

JOURNAL OF BIOLOGICAL CHEMISTRY
Volume 282, Issue 1, Pages 14-28

Publisher

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M605817200

Keywords

-

Funding

  1. NIDDK NIH HHS [R01 DK067257] Funding Source: Medline

Ask authors/readers for more resources

Intestinal epithelial cells are subject to repetitive deformation during peristalsis and villous motility, whereas the mucosa atrophies during sepsis or ileus when such stimuli are abnormal. Such repetitive deformation stimulates intestinal epithelial proliferation via focal adhesion kinase (FAK) and extracellular signal-regulated kinases (ERK). However, the upstream mediators of these effects are unknown. We investigated whether Src and Rac1 mediate deformation-induced FAK and ERK phosphorylation and proliferation in human Caco-2 and rat IEC-6 intestinal epithelial cells. Cells cultured on collagen-I were subjected to an average 10% cyclic strain at 10 cycles/min. Cyclic strain activated Rac1 and induced Rac1 translocation to cell membranes. Mechanical strain also induced rapid sustained phosphorylation of c-Src at Tyr(418), Rac1 at Ser(71), FAK at Tyr(397) and Tyr(576), and ERK1/2 at Thr(202)/Tyr(204). The mitogenic effect of cyclic strain was blocked by inhibition of Src (PP2 or short interfering RNA) or Rac1 (NSC23766). Src or Rac1 inhibition also prevented strain-induced FAK phosphorylation at Tyr(576) and ERK phosphorylation but not FAK phosphorylation at Tyr(397). Reducing FAK using short interfering RNA blocked strain-induced mitogenicity and attenuated ERK phosphorylation but not Src or Rac1 phosphorylation. Src inhibition blocked strain-induced Rac1 phosphorylation, but Rac inhibition did not alter Src phosphorylation. Transfection of a two-tyrosine phosphorylation-deficient FAK mutant Y576F/Y577F prevented activation of cotransfected myc-ERK2 by cyclic strain. Repetitive deformation induced by peristalsis or villus motility may support the gut mucosa by a pathway involving Src, Rac 1, FAK, and ERK. This pathway may present important targets for interventions to prevent mucosal atrophy during prolonged iIeus or fasting.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available