4.7 Article

Designer self-assembling peptide materials

Journal

MACROMOLECULAR BIOSCIENCE
Volume 7, Issue 1, Pages 13-22

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/mabi.200600230

Keywords

-

Ask authors/readers for more resources

Understanding of macromolecular materials at the molecular level is becoming increasingly important for a new generation of nanomaterials for nanobiotechnology and other disciplines, namely, the design, synthesis, and fabrication of nanodevices at the molecular scale from bottom up. Basic engineering principles for microfabrication can be learned through fully grasping the molecular self-assembly and programmed assembly phenomena. Self- and programmed-assembly phenomena are ubiquitous in nature. Two key elements in molecular macrobiological material productions are chemical complementarity and structural compatibility, both of which require weak and non-covalent interactions that bring building blocks together during self-assembly. Significant advances have been made during the 1990s at the interface of materials chemistry and biology. They include the design of helical ribbons, peptide nanofiber scaffolds for three-dimensional cell cultures and tissue engineering, peptide surfactants for solubilizing and stabilizing diverse types of membrane proteins and their complexes, and molecular ink peptides for arbitrary printing and coating surfaces as well as coiled-coil helical peptides for multi- length scale fractal structures. These designer self-assembling peptides have far reaching implications in a broad spectrum of applications in biology, medicine, nanobiotechnology, and nanobiomedical technology, some of which are beyond our current imaginations.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available