4.6 Article

Nanometer-scale order in amorphous Ge2Sb2Te5 analyzed by fluctuation electron microscopy

Journal

APPLIED PHYSICS LETTERS
Volume 90, Issue 2, Pages -

Publisher

AMER INST PHYSICS
DOI: 10.1063/1.2430067

Keywords

-

Ask authors/readers for more resources

The phase change material Ge2Sb2Te5 is widely investigated for use in nonvolatile memories. It has been reported that the crystallization speed depends on the thermal history, indicating that structural differences exist between amorphous states. The authors apply fluctuation electron microscopy to quantify differences in the nanometer-scale structural order between several amorphous states of Ge2Sb2Te5. All as-deposited films are found to contain ordered regions. Thermal annealing below the crystallization threshold increases the nanoscale order, and such samples crystallize slightly more rapidly. The authors hypothesize that the nanoscale ordered regions act as the nuclei for crystallization, with the largest regions being the most significant.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available