4.5 Article

Temporal variability in the composition and abundance of terrestrially-derived dissolved organic matter in the lower Mississippi and Pearl Rivers

Journal

MARINE CHEMISTRY
Volume 103, Issue 1-2, Pages 172-184

Publisher

ELSEVIER
DOI: 10.1016/j.marchem.2006.07.003

Keywords

Mississippi River; DOM; biomarker; lignin; Gulf of Mexico

Ask authors/readers for more resources

Here we report on temporal changes in the concentration and composition of lignin phenols in high molecular weight (< 0.2 mu m, > 1 kDa) dissolved organic matter (HMW DOM) collected from the lower Mississippi and Pearl Rivers (MR and PR) (USA). Monthly water samples were collected at a station in the lower reach in each river from August 2001 to August 2003. Significantly higher concentrations of lignin and As values (mg lignin phenols in 100 mg organic carbon) in the Pearl River than in the Mississippi River, reflected sporadic inputs of terrestrial DOM during rainstorm events from wetlands and forest soils. Larger seasonal variations in lignin concentration and composition in the Pearl River, compared to the Mississippi River, were attributed to shifts in organic matter sources from topsoil inputs during rainstorm events to groundwater inputs and in situ production during base flow in this small river. Conversely, lower Lambda(8) and vanillic acid to vanillin ratios [(Ad/Al)v] in the HMW DOM of the lower Mississippi River may be a result of a lower export rate of lignin from agricultural soils due to lower carbon storage in the expansive agricultural systems of the Mississippi River watershed, as well as dilution of phytoplankton DOM inputs. Large seasonal changes in lignin concentration and As (linked at times with river discharge), and minimal variability in the composition of lignin phenols, likely represented an integrated signal of soil-derived vascular inputs from the upstream drainage basin. If we are to better understand the controls of organic matter delivery to the coastal zone from both small and large rivers, sampling strategies need to be adjusted to account for the different scales of hydrologic response time and in situ processing associated with different residence times. (c) 2006 Elsevier B.V All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available