4.7 Article

Towards multi-colour strategies for the detection of oligonucleotide hybridization using quantum dots as energy donors in fluorescence resonance energy transfer (FRET)

Journal

ANALYTICA CHIMICA ACTA
Volume 581, Issue 2, Pages 193-201

Publisher

ELSEVIER
DOI: 10.1016/j.aca.2006.08.026

Keywords

quantum dots; energy transfer; deoxyribonucleic acid; ethidium bromide; biosensor

Ask authors/readers for more resources

The potential for a simultaneous two-colour diagnostic scheme for nucleic acids operating on the basis of fluorescence resonance energy transfer (FRET) has been demonstrated. Upon ultraviolet excitation, two-colours of CdSe/ZnS quantum dots with conjugated oligonucleotide probes act as energy donors yielding FRET-sensitized acceptor emission upon hybridization with fluorophore (Cy3 and Alexa647) labeled target oligonucleotides. Energy transfer efficiencies, Forster distances, changes in quantum yield and lifetime, and signal-to-noise with respect to nonspecific adsorption have been investigated. The dynamic range and limit-of-detection are tunable with the concentration of QD-DNA conjugate. The Cy3 and Alexa647 acceptor schemes can detect target from 4 to 100% or 10 to 100% of the QD-DNA conjugate concentration, respectively. Nanomolar limits of detection have been demonstrated in this paper, however, results indicate that picomolar detection limits can be achieved with standard instrumentation. The use of an intercalating dye (ethidium bromide) as an acceptor to alleviate non-specific adsorption is also described and increases signal-to-noise from S/N < 2 to S/N = 9-10. The ethidium bromide system had a dynamic range from 8 to 100% of the QD-DNA conjugate concentration and could detect target in a matrix containing an excess of non-complementary nucleic acid. (c) 2006 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available