4.7 Article

Ab initio molecular dynamics study of manganese porphine hydration and interaction with nitric oxide

Journal

JOURNAL OF CHEMICAL PHYSICS
Volume 126, Issue 2, Pages -

Publisher

AIP Publishing
DOI: 10.1063/1.2409702

Keywords

-

Ask authors/readers for more resources

The authors use ab initio molecular dynamics and the density functional theory+U (DFT+U) method to compute the hydration environment of the manganese ion in manganese (II) and manganese (III) porphines (MnP) dispersed in liquid water. These are intended as simple models for more complex water soluble porphyrins, which have important physiological and electrochemical applications. The manganese ion in Mn(II)P exhibits significant out-of-porphine plane displacement and binds strongly to a single H2O molecule in liquid water. The Mn in Mn(III)P is on average coplanar with the porphine plane and forms a stable complex with two H2O molecules. The residence times of these water molecules exceed 15 ps. The DFT+U method correctly predicts that water displaces NO from Mn(III)P-NO, but yields an ambiguous spin state for the MnP(II)-NO complex. (c) 2007 American Institute of Physics.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available