4.6 Article

TCR activation eliminates glutamate receptor GluR3 from the cell surface of normal human T cells, via an autocrine/paracrine granzyme B-mediated proteolytic cleavage

Journal

JOURNAL OF IMMUNOLOGY
Volume 178, Issue 2, Pages 683-692

Publisher

AMER ASSOC IMMUNOLOGISTS
DOI: 10.4049/jimmunol.178.2.683

Keywords

-

Categories

Ask authors/readers for more resources

The majority of resting normal human T cells, like neuronal cells, express functional receptors for glutamate (the major excitatory neurotransmitter in the CNS) of the ionotropic alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-receptor subtype 3 (GluR3). Glutamate by itself (similar to 10 nM) activates key T cell functions, including adhesion to fibronectin and laminin and chemotactic migration toward CXCL12/stromal cell-derived factor 1. In this study, we found by GluR3-specific immunostaining, flow cytometry, and Western blots that GluR3 cell surface expression decreases dramatically following TCR activation of human T cells. CXCR4, VLA-4, and VLA-6 also decrease substantially, whereas CD147 increases as expected, after TCR activation. Media of TCR-activated cells eliminates intact GluR3 (but not CXCR4 and VLA-6) from the cell surface of resting T cells, suggesting GluR3 cleavage by a soluble factor. We found that this factor is granzyme B (GB), a serine protease released by TCR-activated cells, because the extent of GluR3 elimination correlated with the active GB levels, and because three highly specific GB inhibitors blocked GluR3 down-regulation. Media of TCR-activated cells, presumably containing cleaved GluR3B peptide (GluR3 aa 372-388), inhibited the specific binding of anti-GluR3B mAb to synthetic GluR3B peptide. In parallel to losing intact GluR3, TCR-activated cells lost glutamate-induced adhesion to laminin. Taken together, our study shows that classical immunological TCR activation, via autocrine/paracrine GB, down-regulates substantially the expression of specific neurotransmitter receptors. Accordingly, glutamate T cell neuroimmune interactions are influenced by the T cell activation state, and glutamate, via AMPA-GluR3, may activate only resting, but not TCR-activated, T cells. Finally, the cleavage and release to the extracellular milieu of the GluR3B peptide may in principle increase its antigenicity, and thus the production, of anti-self GluR3B autoantibodies, which activate and kill neurons found in patients with various types of epilepsy.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available