4.7 Article

Whole genome tiling path array CGH analysis of segmental copy number alterations in cervical cancer cell lines

Journal

INTERNATIONAL JOURNAL OF CANCER
Volume 120, Issue 2, Pages 436-443

Publisher

WILEY
DOI: 10.1002/ijc.22335

Keywords

array CGH; copy number; cervical cancer; genetic; alterations; HPV integration; 3q

Categories

Funding

  1. NCI NIH HHS [R01 CA103830-02, P01 CA082710-06] Funding Source: Medline

Ask authors/readers for more resources

Cervical cancer is the second most common malignancy in women worldwide, with high risk subtypes of human papillomavirus (HPV) constituting the major etiological agent. However, only a small percentage of women infected by the virus develop disease, suggesting that additional host genetic alterations are necessary for disease progression. In this study we examined the genomes of a panel of commonly used model cervical cancer cell lines using a recently developed whole genome tiling path array for CGH analysis. Detailed analysis of genomic profiles enabled the detection of many novel aberrations, which may have been missed by conventional cytogenetic methods. In total, 27 minimal regions of recurrent copy number alteration were identified that are potentially involved in tumorigenesis. Interestingly, fine mapping of the 3q gain, which is associated with the progression of precursor lesions to invasive cervical cancer, identified a minimal region of alteration harboring genes distinct from previous candidates. Novel regions of gene amplification, including the coamplification of both the Birc and MMP gene clusters on 11q22, were also evident. Lastly, characterization of genomic structure at sites of HPV integration identified the copy number gain of host cellular sequences between the viral-host genomic boundaries in both SiHa and SW756, suggesting a direct role for HPV integration in the development of genetic abnormalities that initiate cervical cancer. This work represents the highest resolution look at a cervical cancer genome to date and offers definitive characterization of the alteration status of these cancer cell lines. (c) 2006 Wiley-Liss, Inc.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available