4.6 Article

Filamin-regulated F-actin assembly is essential for morphogenesis and controls phototaxis in Dictyostelium

Journal

JOURNAL OF BIOLOGICAL CHEMISTRY
Volume 282, Issue 3, Pages 1948-1955

Publisher

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M610262200

Keywords

-

Ask authors/readers for more resources

Dictyostelium strains lacking the F-actin cross-linking protein filamin (ddFLN) have a severe phototaxis defect at the multicellular slug stage. Filamins are rod-shaped homodimers that cross-link the actin cytoskeleton into highly viscous, orthogonal networks. Each monomer chain of filamin is comprised of an F-actin-binding domain and a rod domain. In rescue experiments only intact filamin re-established correct phototaxis in filamin minus mutants, whereas C-terminally truncated filamin proteins that had lost the dimerization domain and molecules lacking internal repeats but retaining the dimerization domain did not rescue the phototaxis defect. Deletion of individual rod repeats also changed their subcellular localization, and mutant filamins in general were less enriched at the cell cortex as compared with the full-length protein and were increasingly present in the cytoplasm. For correct phototaxis ddFLN is only required at the tip of the slug because expression under control of the cell type-specific extracellular-matrix protein A (ecmA) promoter and mixing experiments with wild type cells supported phototactic orientation. Likewise, in chimeric slugs wild type cells were primarily found at the tip of the slug, which acts as an organizer in Dictyostelium morphogenesis.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available