4.7 Article

Effect of surface wettability on liquid density, structure, and diffusion near a solid surface

Journal

JOURNAL OF CHEMICAL PHYSICS
Volume 126, Issue 3, Pages -

Publisher

AIP Publishing
DOI: 10.1063/1.2424934

Keywords

-

Ask authors/readers for more resources

Molecular dynamics and Langevin dynamics simulations are used to elucidate the behavior of liquid atoms near a solid boundary. Correlations between the surface wettability and spatial variations in liquid density and structure are identified. The self-diffusion coefficient tensor is predicted, revealing highly anisotropic and spatially varying mass transfer phenomena near the solid boundary. This behavior affects self-diffusion at a range of time scales. Near a more-wetting surface, self-diffusion is impeded by strong solid-liquid interactions that induce sharp liquid density gradients and enhanced liquid structure. Conversely, near a less-wetting surface, where solid-liquid interactions are weaker, the liquid density is low, the atoms are disordered, and diffusion is enhanced. These findings suggest that altering the wettability of a micro- or nanochannel may provide a passive means for controlling the diffusion of select targets towards a functionalized surface and controlling the reaction rate in diffusion-limited reactions. (c) 2007 American Institute of Physics.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available