4.7 Article

Shear strength and interfacial microstructure of Sn-Ag-xNi/Cu single shear lap solder joints

Publisher

ELSEVIER SCIENCE SA
DOI: 10.1016/j.msea.2006.08.065

Keywords

shear strength; microstructure; single shear lap joint; intermetallic compound (IMC)

Ask authors/readers for more resources

This study investigates composite lead-free solders fabricated by adding between 0.5 and 3 wt% of Ni particles in situ to Sn-3.5 wt%Ag lead-free solder. The single lap shear strength, fracture behavior and microstructural evolution characteristics of the as-reflowed specimens are examined and compared with those of specimens thermally aged at 150 degrees C for various aging times. In general, it is found that the single lap shear strength of the joints increases with increasing Ni addition in the as-reflowed condition, but decreases with increasing storage time in the aged specimens. For Ni additions of 0.5 and 1 wt%, the specimens fracture in the solder near the intermetallic compound (IMC) layer/solder interface, which suggests that the solder matrix has a lower strength than the IMC layer. The presence of elongated dimple-like structures on the fracture surfaces of these specimens is indicative of a ductile failure mode. For Ni additions of more than 1 wt%, the specimens fracture with brittle characteristics at the solder/IMC interface, which indicates that an increased Ni addition increases the strength of the solder matrix beyond that of the interfacial layer. (c) 2006 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available