4.7 Article

The yeast orthologue of GRASP65 forms a complex with a coiled-coil protein that contributes to ER to Golgi traffic

Journal

JOURNAL OF CELL BIOLOGY
Volume 176, Issue 3, Pages 255-261

Publisher

ROCKEFELLER UNIV PRESS
DOI: 10.1083/jcb.200607151

Keywords

-

Categories

Funding

  1. Medical Research Council [MC_U105178783] Funding Source: Medline
  2. MRC [MC_U105178783] Funding Source: UKRI
  3. Medical Research Council [MC_U105178783] Funding Source: researchfish

Ask authors/readers for more resources

The mammalian Golgi protein GRASP65 is required in assays that reconstitute cisternal stacking and vesicle tethering. Attached to membranes by an N-terminal myristoyl group, it recruits the coiled-coil protein GM130. The relevance of this system to budding yeasts has been unclear, as they lack an obvious orthologue of GM130, and their only GRASP65 relative (Grh1) lacks a myristoylation site and has even been suggested to act in a mitotic checkpoint. In this study, we show that Grh1 has an N-terminal amphipathic helix that is N-terminally acetylated and mediates association with the cis-Golgi. We find that Grh1 forms a complex with a previously uncharacterized coiled-coil protein, Ydl099w (Bug1). In addition, Grh1 interacts with the Sec23/24 component of the COPII coat. Neither Grh1 nor Bug1 are essential for growth, but biochemical assays and genetic interactions with known mediators of vesicle tethering (Uso1 and Ypt1) suggest that the Grh1-Bug1 complex contributes to a redundant network of interactions that mediates consumption of COPII vesicles and formation of the cis-Golgi.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available