4.5 Article

The influences of boiling and drying treatments on the behaviors of tension wood with gelatinous layers in Zelkova serrata

Journal

JOURNAL OF WOOD SCIENCE
Volume 53, Issue 1, Pages 5-10

Publisher

SPRINGER JAPAN KK
DOI: 10.1007/s10086-006-0815-2

Keywords

tension wood; gelatinous fiber; gelatinous layer; cellulose microfibril; Zelkova serrata M.

Ask authors/readers for more resources

This study examined how boiling and drying treatments influenced various physical properties of the tension wood with gelatinous fibers (G-fibers) of a 29-yearold Zelkova branch. By boiling treatment, tension wood with numerous G-fibers contracted considerably in the longitudinal direction and the longitudinal Young's modulus decreased in spite of the water-saturated condition. The drying treatment caused green tension wood and boiled tension wood with numerous G-fibers to shrink longitudinally and increased their longitudinal Young's moduli. These specific behaviors in tension wood were highly correlated with the proportion of G-fibers in a specimen and were probably caused by the microscopic behavior of cellulose microfibril (CMF) in the gelatinous layers (G-layers). The longitudinal shrinkage of tension wood due to drying suggests the existence of a hygro-sensible, noncrystalline region in the CMF, which is abundant in the G-layer. Furthermore, the noncrystalline region in the CMF softens during boiling treatment, resulting in the reduction of the longitudinal Young's modulus in tension wood. The longitudinal contraction of tension wood with G-fibers by boiling might be caused by the tensile growth stress remaining in green G-layers. However, no changes were detected in the 004 d-spacing of cellulose crystal in tension wood from the boiling and drying treatments, regardless of the proportion of G-fibers.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available