4.7 Article

Coupling a stochastic soot population balance to gas-phase chemistry using operator splitting

Journal

COMBUSTION AND FLAME
Volume 148, Issue 3, Pages 158-176

Publisher

ELSEVIER SCIENCE INC
DOI: 10.1016/j.combustflame.2006.10.007

Keywords

soot; Monte Carlo; operator splitting; strang splitting; numerical convergence; particle composition

Funding

  1. EPSRC [EP/C547241/1] Funding Source: UKRI

Ask authors/readers for more resources

The feasibility of coupling a stochastic soot algorithm to a deterministic gas-phase chemistry solver is investigated for homogeneous combusting systems. A second-order splitting technique was used to decouple the particle population and gas phase in order to solve. A numerical convergence study is presented that demonstrates convergence with splitting step size and particle Count for a batch reactor and a perfectly stirred reactor. Simulation results are presented alongside experimental data for a plug flow reactor (PFR) and are compared to a method of moments simulation of a perfectly stirred reactor. Coupling of the soot and chemistry solvers is shown to converge for both systems; however, numerical instabilities present significant challenges in the PSR case. Comparison with the experimental data for a PFR showed good agreement of the soot mass and reasonable agreement of the particle size distribution. Two different soot particle models were used to simulate the PFR: a spherical particle model and a surface-volume model that takes some account of particle shape. The results for the two models are compared. Additionally, the stochastic soot solver is used to track the evolution of the C/H ratio of individual soot particles in the PFR for the first time. (c) 2006 Published by Elsevier Inc. on behalf of The Combustion Institute.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available