4.7 Article

Expression of a sorcin missense mutation in the heart modulates excitation-contraction coupling

Journal

FASEB JOURNAL
Volume 21, Issue 2, Pages 475-487

Publisher

WILEY
DOI: 10.1096/fj.06-6292com

Keywords

ryanodine receptor; transgenic; mouse model

Funding

  1. NHLBI NIH HHS [R01 HL076230, R01 HL076230-03] Funding Source: Medline

Ask authors/readers for more resources

Sorcin is a Ca2+ binding protein implicated in the regulation of intracellular Ca2+ cycling and cardiac excitation-contraction coupling. Structural and human genetic studies suggest that a naturally occurring sequence variant encoding L112-sorcin disrupts an E-F hand Ca2+ binding domain and may be responsible for a heritable form of hypertension and hypertrophic heart disease. We generated transgenic mice overexpressing L112-sorcin in the heart and characterized the effects on Ca2+ regulation and cardiac function both in vivo and in dissociated cardiomyocytes. Hearts of sorcin(F112L) transgenic mice were mildly dilated but ventricular function was preserved and systemic blood pressure was normal. Sorcin(F112L) myocytes were smaller than control cells and displayed complex alterations in Ca2+ regulation and contractility, including a slowed inactivation of L-type Ca2+ current, enhanced Ca2+ spark width, duration, and frequency, and increased Na+-Ca2+ exchange activity. In contrast, mice with cardiac-specific overexpression of wild-type sorcin displayed directionally opposite effects on L-type Ca2+ channel function and Ca2+ spark behavior. These data further define the role of sorcin in cardiac excitation-contraction coupling and highlight its negative regulation of SR calcium release. Our results also suggest that additional factors may be responsible for the development of cardiac hypertrophy and hypertension in humans expressing the L112-sorcin sequence variant.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available