4.6 Article

Ab initio GW electron-electron interaction effects in quantum transport

Journal

PHYSICAL REVIEW B
Volume 75, Issue 7, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.75.075102

Keywords

-

Ask authors/readers for more resources

We present an ab initio approach to electronic transport in nanoscale systems which includes electronic correlations through the GW approximation. With respect to Landauer approaches based on density-functional theory (DFT), we introduce a physical quasiparticle electronic structure into a nonequilibrium Green's function theory framework. We use an equilibrium non-self-consistent G(0)W(0) self-energy considering both full non-Hermiticity and dynamical effects. The method is applied to a real system, a gold monoatomic chain. With respect to DFT results, the conductance profile is modified and reduced by the introduction of diffusion and loss-of-coherence effects. The linear response conductance characteristics appear to be in agreement with experimental results.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available