4.4 Article

On the nature of incompressible magnetohydrodynamic turbulence

Journal

PHYSICS OF PLASMAS
Volume 14, Issue 2, Pages -

Publisher

AIP Publishing
DOI: 10.1063/1.2437753

Keywords

-

Ask authors/readers for more resources

A novel model of incompressible magnetohydrodynamic turbulence in the presence of a strong external magnetic field is proposed for the explanation of recent numerical results. According to the proposed model, in the presence of the strong external magnetic field, incompressible magnetohydrodynamic turbulence becomes nonlocal in the sense that low-frequency modes cause decorrelation of interacting high-frequency modes from the inertial interval. It is shown that the obtained nonlocal spectrum of the inertial range of incompressible magnetohydrodynamic turbulence represents an anisotropic analogue of Kraichnan's nonlocal spectrum of hydrodynamic turbulence. Based on the analysis performed in the framework of the weak-coupling approximation, which represents one of the equivalent formulations of the direct interaction approximation, it is shown that incompressible magnetohydrodynamic turbulence could be both local and nonlocal, and therefore anisotropic analogues of both the Kolmogorov and Kraichnan spectra are realizable in incompressible magnetohydrodynamic turbulence.(c) 2007 American Institute of Physics.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available