4.7 Article

Coupling mitochondrial respiratory chain to cell death:: an essential role of mitochondrial complex I in the interferon-β and retinoic acid-induced cancer cell death

Journal

CELL DEATH AND DIFFERENTIATION
Volume 14, Issue 2, Pages 327-337

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/sj.cdd.4402004

Keywords

mitochondrial respiratory chain; cell death; interferon-beta and retinoic acid

Ask authors/readers for more resources

Combination of retinoic acids (RAs) and interferons (IFNs) has synergistic apoptotic effects and is used in cancer treatment. However, the underlying mechanisms remain unknown. Here, we demonstrate that mitochondrial respiratory chain (MRC) plays an essential role in the IFN-beta/RA-induced cancer cell death. We found that IFN-beta/RA upregulates the expression of MRC complex subunits. Mitochondrial-nuclear translocation of these subunits was not observed, but overproduction of reactive oxygen species (ROS), which causes loss of mitochondrial function, was detected upon IFN-beta/RA treatment. Knockdown of GRIM-19 (gene associated with retinoid-interferon-induced mortality-19) and NDUFS3 (NADH dehydrogenase (ubiquinone) Fe-S protein 3), two subunits of MRC complex I, by siRNA in two cancer cell lines conferred resistance to IFN-beta/RA-induced apoptosis and reduced ROS production. In parallel, expression of late genes induced by IFN-beta/RA that are directly involved in growth inhibition and cell death was also repressed in the knockdown cells. Our data suggest that the MRC regulates IFN-beta/RA-induced cell death by modulating ROS production and late gene expression.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available