4.7 Article

Use of gene expression data for predicting continuous phenotypes for animal production and breeding

Journal

ANIMAL
Volume 2, Issue 10, Pages 1413-1420

Publisher

CAMBRIDGE UNIV PRESS
DOI: 10.1017/S1751731108002632

Keywords

gene expression; disease resistance; random regression; cross validation; selective breeding

Funding

  1. EU Commission [0022665]
  2. Norwegian Research Council [172152, 173490]
  3. AKVAFORSK

Ask authors/readers for more resources

Traits such as disease resistance are costly to evaluate and slow to improve using current methods. Analysis of gene expression profiles (e.g. DNA microarrays) has potential for predicting such phenotypes and has been used in an analogous way to classify cancer types in human patients. However doubts have been raised regarding the use of classification methods with microarray data for this purpose. Here we propose a method using random regression with cross validation, which accounts for the distribution of variation in the trait and utilises different subsets of patients or animals to perform a complete validation of predictive ability. Published breast tumour data were used to test the method. Despite the small dataset (n < 100), the new approach resulted in a moderate but significant correlation between the predicted and actual phenotypes (0.32). Binary classification of the predicted phenotypes yielded similar classification error rates to those found by other authors (35%). Unlike other methods, the new method gave a quantitative estimate of phenotype that could be used to rank animals and select those with extreme phenotypic performance. Use of the method in an optimal way using larger sample sizes, and combining DNA microarrays and other testing platforms, is recommended.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available