4.2 Article

Characterising strongly advected discharges in the initial dilution zone

Journal

ENVIRONMENTAL FLUID MECHANICS
Volume 7, Issue 1, Pages 23-41

Publisher

SPRINGER
DOI: 10.1007/s10652-006-9011-6

Keywords

momentum puffs; advected thermals; double-Gaussian; experimental data

Ask authors/readers for more resources

Mean concentration fields of strongly advected non-buoyant discharges are characterised with a double-Gaussian assumption. Comparisons with experimental data show that the approximation provides a reasonable representation of the cross-sectional profiles. The self-similarity of these profiles enables their form to be represented by two additional parameters, one describing the relative separation of the peaks and the other the ratio of the cross-sectional spreads. Values for these additional parameters are determined from experimental data. This systematic approach to characterising the strongly advected flows provides a consistent framework for determining spreading rates and concentration ratios, such as the peak to centreline maximum and the peak to top hat. The double-Gaussian framework also provides a basis for comparisons with the CorJet and VisJet numerical models. In addition the double-Gaussian assumption is employed to interpret data obtained using the Light Attenuation technique. This is a relatively simple measuring system, which provides depth integrated concentration information. The data obtained using this technique is shown to be generally consistent with that from previous studies.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available