4.7 Article

Removal of pharmaceutical residues in a pilot wastewater treatment plant

Journal

ANALYTICAL AND BIOANALYTICAL CHEMISTRY
Volume 387, Issue 4, Pages 1379-1387

Publisher

SPRINGER HEIDELBERG
DOI: 10.1007/s00216-006-0969-1

Keywords

pilot wastewater treatment plant; ibuprofen; ketoprofen; naproxen; diclofenac; degradation products

Ask authors/readers for more resources

Concern is growing over the contamination of the environment with pharmaceutical residues, among which non-steroidal anti-inflammatory drugs (NSAIDs) are one of the most abundant groups. Their widespread appearance in the aquatic environment is because of their high consumption and their incomplete removal during wastewater treatment. Because effective operation of wastewater-treatment plants is important for minimising the release of xenobiotic compounds, for example pharmaceutical products, into the aquatic environment, our study focuses on removal of commonly used NSAIDs (ibuprofen, naproxen, ketoprofen, diclofenac) and clofibric acid in a specially designed small-scale pilot wastewater treatment plant (PWWTP). This study shows that, except for diclofenac, steady-rate removal of NSAIDs over a two-year monitoring period has been achieved. Elimination of the compounds in the PWWTP was >= 87% for ibuprofen, naproxen and ketoprofen but only 49-59% for diclofenac. We also studied clofibric acid. Results after one month of operation revealed 30% elimination with no sign of adaptation by the biomass. Also described are degradation products of diclofenac, which we were able to identify because of the similarity of their mass spectra with those in the NIST library and by comparing the retention times of different compounds. Although the structures of these compounds were confirmed with a high probability (99%), we still need to compare the fragmentation of authentic compounds with degradation products formed under our experimental conditions. Degradation products of ibuprofen, naproxen, ketoprofen, and clofibric acid were found but these must be identified by use of high-resolution mass spectrometry and analysis of authentic compounds.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available