4.8 Article

Bcl-2 protects endothelial cells against γ-radiation via a Raf-MEK-ERK-survivin signaling pathway that is independent of cytochrome c release

Journal

CANCER RESEARCH
Volume 67, Issue 3, Pages 1193-1202

Publisher

AMER ASSOC CANCER RESEARCH
DOI: 10.1158/0008-5472.CAN-06-2265

Keywords

-

Categories

Funding

  1. NCI NIH HHS [5P50 CA 097248] Funding Source: Medline
  2. NIDCR NIH HHS [DE 13161] Funding Source: Medline

Ask authors/readers for more resources

The Bcl-2 oncoprotein is a potent inhibitor of apoptosis and is overexpressed in a wide variety of malignancies. Until recently, it was generally accepted that Bcl-2 primarily mediates its antiapoptotic function by regulating cytochrome c release from mitochondria. However, more recent studies have shown that Bcl-2 is present on several intracellular membranes and mitochondria may not be the only site where Bcl-2 exercises its survival function. In this study, we investigated if Bcl-2 can protect endothelial cells against gamma-radiation by a cytochrome c-independent signaling pathway. Human dermal microvascular endothelial cells (HDMEC), when exposed to gamma-radiation, exhibited a time-dependent activation of caspase-3 that was associated with increased cytochrome c release from mitochondria. Bcl-2 expression in endothelial cells (HDMEC-Bcl-2) significantly inhibited irradiation-induced caspase-3 activation. However, Bcl-2-mediated inhibition of caspase-3 was significantly reversed by inhibition of the Raf-mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) kinase (MEK)-ERK pathway. Interestingly, caspase-3 activation in HDMEC-Bcl-2 cells was not associated with cytochrome c release. We also observed that endothelial cell Bcl-2 expression significantly increased the expression of survivin and murine double minute-2 (Mdm2) via the Raf-MEK-ERK pathway. Endothelial cells expressing Bcl-2 also inhibited gamma-radiation-induced activation of p38 MAPK and p53 accumulation. Inhibition of p53 accumulation in HDMEC-Bcl-2 could be due to the enhanced expression of Mdm2 in these cells. Taken together, these results show three mechanisms by which Bcl-2 may mediate endothelial cell cytoprotection independently of cytochrome c release: (a) increased survivin expression, (b) inhibition of p53 accumulation, and (c) inhibition of p38 MAPK.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available