4.5 Article

The transcription factor Gcr1 stimulates cell growth by participating in nutrient-responsive gene expression on a global level

Journal

MOLECULAR GENETICS AND GENOMICS
Volume 277, Issue 2, Pages 171-188

Publisher

SPRINGER HEIDELBERG
DOI: 10.1007/s00438-006-0182-0

Keywords

glycolysis; ribosomal proteins; YBR187W; respiration; cell size; reverse recruitment

Funding

  1. NCRR NIH HHS [RR16476] Funding Source: Medline

Ask authors/readers for more resources

Transcriptomic reprogramming is critical to the coordination between growth and cell cycle progression in response to changing extracellular conditions. In Saccharomyces cerevisiae, the transcription factor Gcr1 contributes to this coordination by supporting maximum expression of G1 cyclins in addition to regulating both glucose-induced and glucose-repressed genes. We report here the comprehensive genome-wide expression profiling of gcr1 Delta cells. Our data show that reduced expression of ribosomal protein genes in gcr1 Delta cells is detectable both 20 min after glucose addition and in steady-state cultures of raffinose-grown cells, showing that this defect is not the result of slow growth or growth on a repressing sugar. However, the large cell phenotype of the gcr1 Delta mutant occurs only in the presence of repressing sugars. GCR1 deletion also results in aberrant derepression of numerous glucose repressed loci; glucose-grown gcr1 Delta cells actively respire, demonstrating that this global alteration in transcription corresponds to significant changes at the physiological level. These data offer an insight into the coordination of growth and cell division by providing an integrated view of the transcriptomic, phenotypic, and metabolic consequences of GCR1 deletion.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available