4.2 Article Proceedings Paper

Diversion and cleanup studies of viscoelastic surfactant-based self-diverting acid

Journal

SPE PRODUCTION & OPERATIONS
Volume 22, Issue 1, Pages 121-127

Publisher

SOC PETROLEUM ENG
DOI: 10.2118/86504-PA

Keywords

-

Ask authors/readers for more resources

A self-diverting-acid based on viscoelastic surfactant (SDVA) has been successfully used recently on numerous stimulation treatments of carbonate formations in various fields. The decrease of acid concentration during the spending process viscosifies the fluid through the transformation from spherical micelles to an entangled wormlike micellar structure while penetrating the carbonate rock. The highly viscous fluid acts as a temporary barrier and diverts the fluid into the remaining lower-permeability treating zones. After treatment, the SDVA barrier breaks when contacted either by formation hydrocarbons or pre- and postflush fluids. Quantifying diversion, fluid efficiency, and cleanup are important factors for successful candidate selection and job design. Laboratory tests defining these key factors are presented in this paper. This paper demonstrates the diverting ability of the acid as a function of permeability, characterized by introducing the concept of maximum pressure ratio (dP(max)/dP(0)) supported by core-flow and acid conductivity tests using limestone and dolomite cores. Results demonstrate high dP(max)/dP(0) in high-permeability cores and low dP(max)/dP(0) in low-permeability cores. Retained permeability measurements are presented that assess the level of cleanup. Flow-initiation experiments of spent acid systems with gas and brine were performed to illustrate the cleanup behavior of SDVA in comparison to gelled acid systems under conditions encountered in gas and oil wells. The results indicate that SDVA systems clean up easily and that SDVA provides higher regained permeability than conventional gelled acid systems.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available