4.6 Article

Three-dimensional atomic-arrangement reconstruction from an Auger-electron hologram

Journal

PHYSICAL REVIEW B
Volume 75, Issue 8, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.75.085419

Keywords

-

Ask authors/readers for more resources

Current methods for reconstructing three-dimensional atomic arrangements from photoelectron holograms require data sets recorded using multiple incident photon energies. These techniques are thus difficult to apply to Auger-electron holography, since the kinetic energy of the Auger electron is element specific and independent of excitation energy. We propose a scattering pattern extraction algorithm using a maximum-entropy method for reconstructing the three-dimensional atomic arrangement from a single-energy Auger-electron hologram. The algorithm provides a clear atomic image by taking into account the scattering of the electron by nearby atoms and the non-s-wave nature of the Auger electron. We have applied the algorithm to an Auger-electron hologram of Cu(001) recorded at SPring-8's soft x-ray synchrotron radiation beamline BL25SU and succeeded in determining the positions of 102 atoms of the Cu fcc structure.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available