4.5 Article

Inhibition of de novo ceramide synthesis upregulates phospholipase D and enhances myogenic differentiation

Journal

JOURNAL OF CELL SCIENCE
Volume 120, Issue 3, Pages 407-416

Publisher

COMPANY BIOLOGISTS LTD
DOI: 10.1242/jcs.03331

Keywords

myogenic differentiation; satellite cells; ceramide; phospholipase D; fumonisin; cytoskeleton

Categories

Ask authors/readers for more resources

In L6 skeletal myoblasts induced to differentiate by Arg8-vasopressin treatment, a short-lived lowering of ceramide levels was observed, followed by a long-lasting elevation that was prevented by inhibitors of the de novo synthesis pathway, fumonisin B1 and myriocin. Both inhibitors increased the expression of myogenic differentiation markers and cell fusion rate, whereas short-chain ceramides inhibited these responses. Similar drug effects were observed on primary mouse satellite cell differentiation. Furthermore, bacterial sphingomyelinase overexpression suppressed myogenin nuclear accumulation in L6 cells. These data suggested that endogenous ceramide mediates a negative feedback mechanism limiting myogenic differentiation, and that inhibitors of ceramide synthesis promoted myogenesis by removing this control. Phospholipase D (PLD), a recognized target of ceramide, is required for myogenesis, as shown by the negative effects of PLD1 isoform depletion obtained by siRNA treatment. Fumonisin induced an increase in PLD activity of L6 cells, whereas C6-ceramide decreased it. The expression of PLD1 mRNA transcripts was selectively decreased by C6-ceramide, and increased by ceramide synthesis inhibitors. An early step of myogenic response is the PLD1-dependent formation of actin stress fiber-like structures. C6-ceramide addition or overexpression of sphingomyelinase impaired actin fiber formation. Ceramide might thus regulate myogenesis through downregulation of PLD1 expression and activity.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available