4.7 Article

Dark matter clustering: A simple renormalization group approach

Journal

PHYSICAL REVIEW D
Volume 75, Issue 4, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevD.75.043514

Keywords

-

Ask authors/readers for more resources

I compute a renormalization group (RG) improvement to the standard beyond-linear-order Eulerian perturbation theory (PT) calculation of the power spectrum of large-scale density fluctuations in the Universe. At z=0, for a power spectrum matching current observations, lowest order RGPT appears to be as accurate as one can test using existing numerical simulation-calibrated fitting formulas out to at least k similar or equal to 0.3h Mpc(-1); although inaccuracy is guaranteed at some level by approximations in the calculation (which can be improved in the future). In contrast, standard PT breaks down virtually as soon as beyond-linear corrections become non-negligible, on scales even larger than k=0.1h Mpc(-1). This extension in range of validity could substantially enhance the usefulness of PT for interpreting baryonic acoustic oscillation surveys aimed at probing dark energy, for example. I show that the predicted power spectrum converges at high k to a power law with index given by the fixed-point solution of the RG equation. I discuss many possible future directions for this line of work. The basic calculation of this paper should be easily understandable without any prior knowledge of RG methods, while a rich background of mathematical physics literature exists for the interested reader.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available