4.7 Article

Genes involved in oxidative phosphorylation are coordinately upregulated with fasting hyperglycaemia in livers of patients with type 2 diabetes

Journal

DIABETOLOGIA
Volume 50, Issue 2, Pages 268-277

Publisher

SPRINGER
DOI: 10.1007/s00125-006-0489-8

Keywords

DNA chip; liver; oxidative phosphorylation; serial analysis of gene expression; type 2 diabetes

Ask authors/readers for more resources

Aims/hypothesis Mitochondrial oxidative phosphorylation (OXPHOS) plays an important role in the pathophysiology of type 2 diabetes. Genes involved in OXPHOS have been reported to be down-regulated in skeletal muscle from patients with type 2 diabetes; however, hepatic regulation is unknown. Methods We analysed expression of genes involved in OXPHOS from the livers of 14 patients with type 2 diabetes and 14 subjects with NGT using serial analysis of gene expression (SAGE) and DNA chip analysis. We evaluated the correlation between expression levels of genes involved in OXPHOS and the clinical parameters of individuals with type 2 diabetes and NGT. Results Both gene analyses showed that genes involved in OXPHOS were significantly upregulated in the type 2 diabetic liver. In the SAGE analysis, tag count comparisons of mitochondrial transcripts showed that ribosomal RNAs (rRNA) were 3.5-fold over-expressed, and mRNAs were 1.2-fold over-expressed in the type 2 diabetes library. DNA chip analysis revealed that expression of genes involved in OXPHOS, which correlated with several nuclear factors, including estrogen-related receptor-alpha or peroxisome proliferator-activated receptor-gamma, was a predictor of fasting plasma glucose levels, independently of age, BMI, insulin resistance and fasting insulin levels (p=0.04). Surprisingly, genes involved in OXPHOS did not correlate with peroxisome proliferator-activated receptor-gamma coactivator-1 alpha or nuclear respiratory factor 1. Conclusions/interpretation Our results indicate that upregulation of genes involved in OXPHOS in the liver, which are regulated by different mechanisms from genes in the skeletal muscle, is associated with fasting hyperglycaemia in patients with type 2 diabetes.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available