4.7 Article

Heterosis associated gene expression in maize embryos 6 days after fertilization exhibits additive, dominant and overdominant pattern

Journal

PLANT MOLECULAR BIOLOGY
Volume 63, Issue 3, Pages 381-391

Publisher

SPRINGER
DOI: 10.1007/s11103-006-9095-x

Keywords

heterosis; embryo development; maize; real-time PCR; suppression subtractive hybridization; microarray hybridization

Ask authors/readers for more resources

Heterosis is important for conventional plant breeding and is intensively used to increase the productivity of crop plants. Genetic processes shortly after fertilization might be of particular importance with respect to heterosis, because coordination of the diverse genomes establishes a basis for future performance of the sporophyte. Here we demonstrate a strong crossbreeding advantage of hybrid maize embryos as early as 6 days after fertilization in a modern maize hybrid and provide the first embryo specific analysis of associated gene expression pattern at this early stage of development. We identified differentially expressed genes between hybrid embryos and the parental genotypes by a combined approach of suppression subtractive hybridization and differential screening by microarray hybridizations. Association of heterosis in embryos with genes related to signal transduction and other regulatory processes was implied by the enrichment of these functional classes among the identified gene set. Quantitative RT-PCR analysis validated the expression pattern of 7 of 12 genes analysed and revealed predominantly additive, but also dominant and overdominant expression patterns in hybrid embryos. These patterns indicate that gene regulatory interactions among parental alleles act at this early developmental stage and the genes identified provide entry points for the exploration of gene regulatory networks associated with the specification of the phenomenon heterosis in the plant life cycle.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available