4.4 Article

Neural representations of temporally modulated signals in the auditory thalamus of awake primates

Journal

JOURNAL OF NEUROPHYSIOLOGY
Volume 97, Issue 2, Pages 1005-1017

Publisher

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/jn.00593.2006

Keywords

-

Funding

  1. NIDCD NIH HHS [R03 DC006357, R01 DC003180, DC 03180, DC 06357] Funding Source: Medline

Ask authors/readers for more resources

In sensory systems, the thalamus has historically been considered a relay station. Neural representations of temporal modulations in the auditory system undergo considerable changes as they pass from the inferior colliculus ( IC) to the auditory cortex. We sought to determine in awake primates the extent to which auditory thalamic neurons contribute to these transformations. We tested the temporal processing capabilities of medial geniculate body ( MGB) neurons in awake marmoset monkeys using repetitive click stimuli. MGB neurons were able to synchronize to periodic clicks at repetition rates significantly higher than auditory cortex neurons. Unlike responses in the MGB of anesthetized animals, > 40% of MGB neurons in awake marmosets displayed nonsynchronized discharges when stimulated by high click rates ( short interclick intervals). Such nonsynchronized MGB responses typically occurred at higher repetition rates than those observed in auditory cortex. In contrast to auditory cortex neurons, many MGB neurons exhibited both synchronized and nonsynchronized discharge patterns. In both MGB and auditory cortex, synchronized and nonsynchronized responses represented complementary ranges of interclick intervals ( 1/ click rate). Furthermore, the temporal processing abilities of some MGB neurons were sensitive to the spectrotemporal parameters of the click stimuli used. Together, these findings suggest that MGB neurons participate in active transformations of the neural representations of temporal modulations from IC to auditory cortex. In particular, the MGB appears to be the first station in the auditory ascending pathway in which substantial nonsynchronized responses emerge.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available