4.6 Article

In vivo laser speckle imaging reveals microvascular remodeling and hemodynamic changes during wound healing angiogenesis

Journal

ANGIOGENESIS
Volume 15, Issue 1, Pages 87-98

Publisher

SPRINGER
DOI: 10.1007/s10456-011-9245-x

Keywords

Angiogenesis; Hemodynamics; Laser speckle imaging; Wound healing; Vasculature

Funding

  1. National Institute of Aging [R01AG029681]
  2. Department of Health and Human Services [1R43CA139983-01]
  3. JHU Institute of NanoBiotechnology (INBT)

Ask authors/readers for more resources

Laser speckle contrast imaging (LSCI) is a high-resolution and high contrast optical imaging technique often used to characterize hemodynamic changes in short-term physiological experiments. In this study, we demonstrate the utility of LSCI for characterizing microvascular remodeling and hemodynamic changes during wound healing angiogenesis in vivo. A 2 mm diameter hole was made in the mouse ear and the periphery of the wound imaged in vivo using LSCI over 12 days. We were able to visualize and quantify the vascular and perfusion changes that accompanied wound healing in the microenvironment proximal to the wound, and validated these changes with histology. We found that consistent with the stages of wound healing, microvessel density increased during the initial inflammatory phase (i.e., day 0-3), stayed elevated through the tissue formation phase (i.e., until day 7) and returned to baseline during the tissue remodeling phase (i.e., by day 12). Concomitant wide area mapping of blood flow revealed that tissue perfusion in the wound periphery initially decreased, gradually increased from day 3-7, and subsided as healing completed. Interestingly, some regions exhibited a reestablishment of tissue perfusion approximately 6 days earlier than the similar to 18 days usually reported for the long term remodeling phase. The results from this study demonstrate that LSCI is an ideal platform for elucidating in vivo changes in microvascular hemodynamics and angiogenesis, and has the potential to offer invaluable insights in a range of disease models involving abnormal hemodynamics, such as diabetes and tumors.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available