4.0 Review

The making of successful axonal regeneration: Genes, molecules and signal transduction pathways

Journal

BRAIN RESEARCH REVIEWS
Volume 53, Issue 2, Pages 287-311

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.brainresrev.2006.09.005

Keywords

axotomy; chromatolysis; quantitative assessment; mitogen associated protein kinase signaling cascade; inflammation; cytoskeleton

Categories

Ask authors/readers for more resources

Unlike its central counterpart, the peripheral nervous system is well known for its comparatively good potential for regeneration following nerve fiber injury. This ability is mirrored by the de novo expression or upregulation of a wide variety of molecules including transcription factors, growth-stimulating substances, cell adhesion molecules, intracellular signaling enzymes and proteins involved in regulating cell-surface cytoskeletal interactions, that promote neurite outgrowth in cultured neurons. However, their role in vivo is less known. Recent studies using neutralizing antibodies, gene inactivation and overexpression techniques have started to shed light on those endogenous molecules that play a key role in axonal outgrowth and the process of successful functional repair in the injured nervous system. The aim of the current review is to provide a summary on this rapidly growing field and the experimental techniques used to define the specific effects of candidate signaling molecules on axonal regeneration in vivo. (c) 2006 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.0
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available